Chimie générale (Acides et bases : 2^{ème} partie)

Exercice 1

Le seul soluté en quantité importante dans le vinaigre est l'acide acétique, CH3COOH. Supposons que l'on veuille préparer une solution tampon à l'aide d'un vinaigre dont la masse volumique est $\rho=1,01~{\rm g~cm^{-3}}$ et la teneur en acide acétique de 4,53% masse. (100g de vinaigre contiennent 4.53 g de CH3COOH). Quel serait le pH de la solution tampon obtenue en dissolvant 10,0 g d'acétate de sodium, CH3COONa dans 250 mL de vinaigre à 25°C ?

pKa (CH_3COOH/CH_3COO^-) = 4.75

Exercice 2

On dissout 21 g d'acide benzoïque, C₆H₅COOH, et de 18 g de benzoate de sodium, C₆H₅COONa, dans de l'eau pour préparer 500 mL de solution tampon à 25°C4.51.

- a) Quel est le pH de cette solution?
 - b) Quel est le pH de la solution obtenue par adjonction de 50 mL de NaOH 0,15 M à 50 mL de cette solution tampon ?
 - c) Quel est le pH de la solution obtenue en ajoutant 0,05 mol de HCl gazeux à 100 mL de cette solution tampon ?

pKa $(C_6H_5COOH/C_6H_5COO^-) = 4.2$

Exercice 3

On dissout 10,8 g du chlorure d'ammonium, NH₄Cl, et 0,15 mol d'ammoniac, NH₃, dans de l'eau pour préparer 500 mL de solution tampon.

- a) Quel est le pH de cette solution?
- b) Quel est le pH de la solution obtenue par adjonction de 25 mL de NaOH 0,2 M à 75 mL de cette solution tampon ?
- c) Quel est le pH de la solution obtenue en ajoutant 100 mL HCl 0,1 M à 100 mL de cette solution tampon ?

 $pKa (NH_4+NH_3) = 9.25$

Exercice 4

Calculer le volume d'eau et la masse de NH_4Cl (s) à ajouter à une solution de 250 mL NH_3 (1 mol/L) pour obtenir 0.5 L d'une solution tampon de pH = 10.25. (Considérer pour l'ensemble du problème, que la température vaut 25°C et que l'ajout d'un solide ou d'un gaz à une solution n'en modifie pas le volume.)

 $pKa (NH_4+NH_3) = 9.25$